Automatic driver distraction detection using deep convolutional neural networks

نویسندگان

چکیده

Recently, the number of road accidents has been increased worldwide due to distraction drivers. This rapid crush often leads injuries, loss properties, even deaths people. Therefore, it is essential monitor and analyze driver's behavior during driving time detect mitigate accident. To various kinds like- using cell phone, talking others, eating, sleeping or lack concentration driving; machine learning/deep learning can play significant role. However, this process may need high computational capacity train model by huge training dataset. In paper, we made an effort develop CNN based method distracted driver identify cause distractions like talking, eating means face hand localization. Four architectures namely CNN, VGG-16, ResNet50 MobileNetV2 have adopted for transfer learning. verify effectiveness, proposed trained with thousands images from a publicly available dataset containing ten different postures conditions analyzed results performance metrics. The showed that pre-trained best classification efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Tagging Using Deep Convolutional Neural Networks

We present a content-based automatic music tagging algorithm using fully convolutional neural networks (FCNs). We evaluate different architectures consisting of 2D convolutional layers and subsampling layers only. In the experiments, we measure the AUC-ROC scores of the architectures with different complexities and input types using the MagnaTagATune dataset, where a 4-layer architecture shows ...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Aircraft Detection by Deep Convolutional Neural Networks

Features play crucial role in the performance of classifier for object detection from high-resolution remote sensing images. In this paper, we implemented two types of deep learning methods, deep convolutional neural network (DNN) and deep belief net (DBN), comparing their performances with that of the traditional methods (handcrafted features with a shallow classifier) in the task of aircraft ...

متن کامل

Deep Convolutional Neural Networks for pedestrian detection

Pedestrian detection is a popular research topic due to its paramount importance for a number of applications, especially in the fields of automotive, surveillance and robotics. Despite the significant improvements, pedestrian detection is still an open challenge that calls for more and more accurate algorithms. In the last few years, deep learning and in particular convolutional neural network...

متن کامل

Abnormality Detection in Mammography using Deep Convolutional Neural Networks

Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Intelligent systems with applications

سال: 2022

ISSN: ['2667-3053']

DOI: https://doi.org/10.1016/j.iswa.2022.200075